Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.080
Filtrar
1.
J Bacteriol ; 206(4): e0045223, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38551342

RESUMO

The wobble bases of tRNAs that decode split codons are often heavily modified. In bacteria, tRNAGlu, Gln, Asp contains a variety of xnm5s2U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm5s2U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the conversion of cmnm5s2U to mnm5s2U. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the radical Sam superfamily was found to be involved in the synthesis of mnm5s2U in both Bacillus subtilis and Streptococcus mutans. This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm5s2U into mnm5s2U in B. subtilis. Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathway intermediates owing to regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. Although mechanistic details of these newly discovered components are not fully resolved, the occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in Nature.IMPORTANCEThe xnm5s2U modifications found in several tRNAs at the wobble base position are widespread in bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile radical SAM superfamily and is involved in the synthesis of mnm5s2U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.


Assuntos
Escherichia coli K12 , RNA de Transferência , Humanos , RNA de Transferência/genética , Escherichia coli K12/genética , Bactérias/genética , Metilação , Bactérias Gram-Positivas/genética
2.
J Bacteriol ; 206(4): e0033023, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38470036

RESUMO

Tetrameric single-stranded (ss) DNA-binding proteins (SSBs) stabilize ssDNA intermediates formed during genome maintenance reactions in Bacteria. SSBs also recruit proteins important for these processes through direct SSB-protein interactions, including proteins involved in DNA replication restart and recombination processes. SSBs are composed of an N-terminal oligomerization and ssDNA-binding domain, a C-terminal acidic tip that mediates SSB-protein interactions, and an internal intrinsically disordered linker (IDL). Deletions and insertions into the IDL are well tolerated with few phenotypes, although the largest deletions and insertions exhibit some sensitivity to DNA-damaging agents. To define specific DNA metabolism processes dependent on IDL length, ssb mutants that lack 16, 26, 37, or 47 residues of the 57-residue IDL were tested for synthetic phenotypes with mutations in DNA replication restart or recombination genes. We also tested the impact of integrating a fluorescent domain within the SSB IDL using an ssb::mTur2 insertion mutation. Only the largest deletion tested or the insertion mutation causes sensitivity in any of the pathways. Mutations in two replication restart pathways (PriA-B1 and PriA-C) showed synthetic lethalities or small colony phenotypes with the largest deletion or insertion mutations. Recombination gene mutations del(recBCD) and del(ruvABC) show synthetic phenotypes only when combined with the largest ssb deletion. These results suggest that a minimum IDL length is important in some genome maintenance reactions in Escherichia coli. These include pathways involving PriA-PriB1, PriA-PriC, RecFOR, and RecG. The mTur2 insertion in the IDL may also affect SSB interactions in some processes, particularly the PriA-PriB1 and PriA-PriC replication restart pathways.IMPORTANCEssb is essential in Escherichia coli due to its roles in protecting ssDNA and coordinating genome maintenance events. While the DNA-binding core and acidic tip have well-characterized functions, the purpose of the intrinsically disordered linker (IDL) is poorly understood. In vitro studies have revealed that the IDL is important for cooperative ssDNA binding and phase separation. However, single-stranded (ss) DNA-binding protein (SSB) variants with large deletions and insertions in the IDL support normal cell growth. We find that the PriA-PriB1 and PriA-C replication restart, as well as the RecFOR- and RecG-dependent recombination, pathways are sensitive to IDL length. This suggests that cooperativity, phase separation, or a longer spacer between the core and acidic tip of SSB may be important for specific cellular functions.


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação a DNA/metabolismo , Replicação do DNA , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Recombinação Genética
3.
Genes (Basel) ; 15(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38397225

RESUMO

The bacterial genome contains numerous repeated sequences that greatly affect its genomic plasticity. The Escherichia coli K-12 genome contains three copies of the TRIP1 repeat sequence (TRIP1a, TRIP1b, and TRIP1c). However, the diversity, distribution, and role of the TRIP1 repeat sequence in the E. coli genome are still unclear. In this study, after screening 6725 E. coli genomes, the TRIP1 repeat was found in the majority of E. coli strains (96%: 6454/6725). The copy number and direction of the TRIP1 repeat sequence varied in each genome. Overall, 2449 genomes (36%: 2449/6725) had three copies of TRIP1 (TRIP1a, TRIP1b, and TRIP1c), which is the same as E. coli K-12. Five types of TRIP1 repeats, including two new types (TRIP1d and TRIP1e), are identified in E. coli genomes, located in 4703, 3529, 5741, 1565, and 232 genomes, respectively. Each type of TRIP1 repeat is localized to a specific locus on the chromosome. TRIP1 repeats can cause intra-chromosomal rearrangements. A total of 156 rearrangement events were identified, of which 88% (137/156) were between TRIP1a and TRIP1c. These findings have important implications for future research on TRIP1 repeats.


Assuntos
Escherichia coli K12 , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli K12/genética , Sequências Repetitivas de Ácido Nucleico , Genoma Bacteriano , Genômica , Aberrações Cromossômicas
4.
PLoS One ; 19(2): e0288526, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324614

RESUMO

It was necessary to have a tool that could predict the amount of protein and optimize the gene sequences to produce recombinant proteins efficiently. The Transim model published by Tuller et al. in 2018 can calculate the translation rate in E. coli using features on the mRNA sequence, achieving a Spearman correlation with the amount of protein per mRNA of 0.36 when tested on the dataset of operons' first genes in E. coli K-12 MG1655 genome. However, this Spearman correlation was not high, and the model did not fully consider the features of mRNA and protein sequences. Therefore, to enhance the prediction capability, our study firstly tried expanding the testing dataset, adding genes inside the operon, and using the microarray of the mRNA expression data set, thereby helping to improve the correlation of translation rate with the amount of protein with more than 0.42. Next, the applicability of 6 traditional machine learning models to calculate a "new translation rate" was examined using initiation rate and elongation rate as inputs. The result showed that the SVR algorithm had the most correlated new translation rates, with Spearman correlation improving to R = 0.6699 with protein level output and to R = 0.6536 with protein level per mRNA. Finally, the study investigated the degree of improvement when combining more features with the new translation rates. The results showed that the model's predictive ability to produce a protein per mRNA reached R = 0.6660 when using six features, while the correlation of this model's final translation rate to protein level was up to R = 0.6729. This demonstrated the model's capability to predict protein expression of a gene, rather than being limited to predicting expression by an mRNA and showed the model's potential for development into gene expression predicting tools.


Assuntos
Escherichia coli K12 , Escherichia coli , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Genoma , Proteínas Recombinantes/metabolismo , Biossíntese de Proteínas/genética
5.
Gene ; 906: 148266, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342251

RESUMO

Studies have noted the association between Escherichia coli K-12 (E. coli K-12) and the reduction of malignancy in colorectal cancer (CRC). However, the molecular mechanisms underlying this relationship have not been thoroughly explored. The aim of this study was to identify the genes influenced by E. coli K-12 and their connection to CRC. We identified the genes affected by E. coli K-12 using the GSE50040 dataset. Additionally, we investigated the relationship between the expression of genes affected by E. coli K-12 and CRC using the cancer genome atlas data. The association between the expression of E. coli K-12-affected genes and patient prognosis was investigated using clinical data. Pathways related to CRC and E. coli K-12-related genes were analyzed using the Enrichr tool. Furthermore, we employed a protein-protein interaction (PPI) network to identify hub genes associated with both E. coli K-12 and CRC. To validate our findings, we conducted RT-qPCR analysis on CRC samples and adjacent normal tissue. The results of GSE50040 showed that E. coli K-12 could change the expression of many genes related to CRC in colorectal cell lines. The results showed that E. coli K-12 reduces the expression of several genes linked to the main pathways used by cancer cells, such as the metastasis, WNT, cell proliferation pathway, and mTORC1. It was demonstrated that elevated BGN, FJX1, and LZTS1 expression is linked to a bad prognosis in patients and that E. coli K-12 may be able to lower this expression. Also, based on the PPI network, genes such as KLF4 and CXCL3 were identified as hub genes related to genes affected by E. coli K-12. When KLF4 and CXCL3 expression levels in cancer samples were compared to nearby normal tissue, a significant change in these genes' expression levels was found in CRC. Our findings demonstrated the potential relationship between oncogene genes and genes impacted by E. coli K-12. Also, our findings demonstrated that E. coli K-12 may regulate the expression of genes linked to a high death rate. In summary, the results of this study suggest that E. coli K-12 can be regarded as a significant probiotic with the potential to mitigate the risk of CRC development.


Assuntos
Neoplasias Colorretais , Escherichia coli K12 , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Colorretais/patologia , Expressão Gênica , Regulação Neoplásica da Expressão Gênica
6.
Nucleic Acids Res ; 52(D1): D255-D264, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37971353

RESUMO

RegulonDB is a database that contains the most comprehensive corpus of knowledge of the regulation of transcription initiation of Escherichia coli K-12, including data from both classical molecular biology and high-throughput methodologies. Here, we describe biological advances since our last NAR paper of 2019. We explain the changes to satisfy FAIR requirements. We also present a full reconstruction of the RegulonDB computational infrastructure, which has significantly improved data storage, retrieval and accessibility and thus supports a more intuitive and user-friendly experience. The integration of graphical tools provides clear visual representations of genetic regulation data, facilitating data interpretation and knowledge integration. RegulonDB version 12.0 can be accessed at https://regulondb.ccg.unam.mx.


Assuntos
Bases de Dados Genéticas , Escherichia coli K12 , Regulação Bacteriana da Expressão Gênica , Biologia Computacional/métodos , Escherichia coli K12/genética , Internet , Transcrição Gênica
7.
Nat Commun ; 14(1): 7370, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963869

RESUMO

Functional annotation of open reading frames in microbial genomes remains substantially incomplete. Enzymes constitute the most prevalent functional gene class in microbial genomes and can be described by their specific catalytic functions using the Enzyme Commission (EC) number. Consequently, the ability to predict EC numbers could substantially reduce the number of un-annotated genes. Here we present a deep learning model, DeepECtransformer, which utilizes transformer layers as a neural network architecture to predict EC numbers. Using the extensively studied Escherichia coli K-12 MG1655 genome, DeepECtransformer predicted EC numbers for 464 un-annotated genes. We experimentally validated the enzymatic activities predicted for three proteins (YgfF, YciO, and YjdM). Further examination of the neural network's reasoning process revealed that the trained neural network relies on functional motifs of enzymes to predict EC numbers. Thus, DeepECtransformer is a method that facilitates the functional annotation of uncharacterized genes.


Assuntos
Aprendizado Profundo , Escherichia coli K12 , Escherichia coli K12/genética , Proteínas/genética , Genoma , Escherichia coli/genética , Anotação de Sequência Molecular , Fases de Leitura Aberta
8.
Microb Cell Fact ; 22(1): 237, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978380

RESUMO

BACKGROUND: Methanol is increasingly gaining attraction as renewable carbon source to produce specialty and commodity chemicals, as it can be generated from renewable sources such as carbon dioxide (CO2). In this context, native methylotrophs such as the yeast Komagataella phaffii (syn Pichia pastoris) are potentially attractive cell factories to produce a wide range of products from this highly reduced substrate. However, studies addressing the potential of this yeast to produce bulk chemicals from methanol are still scarce. 3-Hydroxypropionic acid (3-HP) is a platform chemical which can be converted into acrylic acid and other commodity chemicals and biopolymers. 3-HP can be naturally produced by several bacteria through different metabolic pathways. RESULTS: In this study, production of 3-HP via the synthetic ß-alanine pathway has been established in K. phaffii for the first time by expressing three heterologous genes, namely panD from Tribolium castaneum, yhxA from Bacillus cereus, and ydfG from Escherichia coli K-12. The expression of these key enzymes allowed a production of 1.0 g l-1 of 3-HP in small-scale cultivations using methanol as substrate. The addition of a second copy of the panD gene and selection of a weak promoter to drive expression of the ydfG gene in the PpCß21 strain resulted in an additional increase in the final 3-HP titer (1.2 g l-1). The 3-HP-producing strains were further tested in fed-batch cultures. The best strain (PpCß21) achieved a final 3-HP concentration of 21.4 g l-1 after 39 h of methanol feeding, a product yield of 0.15 g g-1, and a volumetric productivity of 0.48 g l-1 h-1. Further engineering of this strain aiming at increasing NADPH availability led to a 16% increase in the methanol consumption rate and 10% higher specific productivity compared to the reference strain PpCß21. CONCLUSIONS: Our results show the potential of K. phaffii as platform cell factory to produce organic acids such as 3-HP from renewable one-carbon feedstocks, achieving the highest volumetric productivities reported so far for a 3-HP production process through the ß-alanine pathway.


Assuntos
Escherichia coli K12 , Metanol , Metanol/metabolismo , Escherichia coli K12/genética , Escherichia coli/metabolismo , beta-Alanina/genética , Engenharia Metabólica/métodos
9.
Biosensors (Basel) ; 13(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37887103

RESUMO

Bloodstream infection is a major health problem worldwide, with extremely high mortality. Detecting infection in the early stage is challenging due to the extremely low concentration of bacteria in the blood. Digital PCR provides unparalleled sensitivity and can achieve absolute quantification, but it is time-consuming. Moreover, the presence of unavoidable background signals in negative controls poses a significant challenge for single-molecule detection. Here, we propose a novel strategy called "Ultrafast flexible thin tube-based droplet digital PCR (utPCR)" that can shorten the digital PCR process from 2 h to only 5 min, with primer annealing/extension time reduced from minutes to only 5 s. Importantly, the ultrafast PCR eliminates nonspecific amplification and thus enables single-molecule detection. The utPCR enabled the sensitive detection and digital quantification of E. coli O157 in the high background of a 106-fold excess of E. coli K12 cells. Moreover, this method also displayed the potential to detect rare pathogens in blood samples, and the limit of detection (LOD) could be as low as 10 CFU per mL of blood without false positive results. Considered ultrafast (<5 min) and highly sensitive (single-molecule detection), the utPCR holds excellent prospects in the next generation of molecular diagnosis.


Assuntos
Escherichia coli K12 , Escherichia coli O157 , Sepse , Humanos , Reação em Cadeia da Polimerase/métodos , Limite de Detecção , Escherichia coli K12/genética
10.
PLoS Genet ; 19(10): e1010996, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792901

RESUMO

Escherichia coli K-12 is a model organism for bacteriology and has served as a workhorse for molecular biology and biochemistry for over a century since its first isolation in 1922. However, Escherichia coli K-12 strains are phenotypically devoid of an O antigen (OAg) since early reports in the scientific literature. Recent studies have reported the presence of independent mutations that abolish OAg repeating-unit (RU) biogenesis in E. coli K-12 strains from the same original source, suggesting unknown evolutionary forces have selected for inactivation of OAg biogenesis during the early propagation of K-12. Here, we show for the first time that restoration of OAg in E. coli K-12 strain MG1655 synergistically sensitises bacteria to vancomycin with bile salts (VBS). Suppressor mutants surviving lethal doses of VBS primarily contained disruptions in OAg biogenesis. We present data supporting a model where the transient presence and accumulation of lipid-linked OAg intermediates in the periplasmic leaflet of the inner membrane interfere with peptidoglycan sacculus biosynthesis, causing growth defects that are synergistically enhanced by bile salts. Lastly, we demonstrate that continuous bile salt exposure of OAg-producing MG1655 in the laboratory, can recreate a scenario where OAg disruption is selected for as an evolutionary fitness benefit. Our work thus provides a plausible explanation for the long-held mystery of the selective pressure that may have led to the loss of OAg biogenesis in E. coli K-12; this opens new avenues for exploring long-standing questions on the intricate network coordinating the synthesis of different cell envelope components in Gram-negative bacteria.


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Escherichia coli/genética , Antígenos O/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Ácidos e Sais Biliares
11.
mSystems ; 8(5): e0066323, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37623321

RESUMO

IMPORTANCE: Bacteria adapt to changing environments by altering the transcription of their genes. Specific proteins can regulate these changes. This study explored how a single protein called RpoS controls how many genes change expression during adaptation to three stresses. We found that: (i) RpoS is responsible for activating different genes in different stresses; (ii) that during a stress, the timing of gene activation depends on the what stress it is; and (iii) that how much RpoS a gene needs in order to be activated can predict when that gene will be activated during the stress of stationary phase.


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Bactérias/genética , Fator sigma/genética
12.
J Biotechnol ; 374: 80-89, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567503

RESUMO

Although the presence of silica in many living organisms offers advanced properties including cell protection, the different in vitro attempts to build living materials in pure silica never favoured the cells viability. Thus, little attention has been paid to host-guest interactions to modify the expected biologic response. Here we report the physiological changes undergone by Escherichia coli K-12 in silica from colloidal solution to gel confinement. We show that the physiological alterations in growing cultures are not triggered by the initial oxidative Reactive Oxygen Species (ROS) response. Silica promotes the induction of alternative metabolic pathways along with an increase of growth suggesting the existence of rpoS polymorphisms. Since the functionality of hybrid materials depends on the specific biologic responses of their guests, such cell physiological adaptation opens perspectives in the design of bioactive devices attracting for a large field of sciences.


Assuntos
Produtos Biológicos , Escherichia coli K12 , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Dióxido de Silício , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Escherichia coli/metabolismo , Adaptação Fisiológica
13.
J Bacteriol ; 205(8): e0012923, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37439671

RESUMO

The dicBF operon of Qin cryptic prophage in Escherichia coli K-12 encodes the small RNA (sRNA) DicF and small protein DicB, which regulate host cell division and are toxic when overexpressed. While new functions of DicB and DicF have been identified in recent years, the mechanisms controlling the expression of the dicBF operon have remained unclear. Transcription from dicBp, the major promoter of the dicBF operon, is repressed by DicA. In this study, we discovered that transcription of the dicBF operon and processing of the polycistronic mRNA is regulated by multiple mechanisms. DicF sRNA accumulates during stationary phase and is processed from the polycistronic dicBF mRNA by the action of both RNase III and RNase E. DicA-mediated transcriptional repression of dicBp can be relieved by an antirepressor protein, Rem, encoded on the Qin prophage. Ectopic production of Rem results in cell filamentation due to strong induction of the dicBF operon, and filamentation is mediated by DicF and DicB. Spontaneous derepression of dicBp occurs in a subpopulation of cells independent of the antirepressor. This phenomenon is reminiscent of the bistable switch of λ phage with DicA and DicC performing functions similar to those of CI and Cro, respectively. Additional experiments demonstrate stress-dependent induction of the dicBF operon. Collectively, our results illustrate that toxic genes carried on cryptic prophages are subject to layered mechanisms of control, some that are derived from the ancestral phage and some that are likely later adaptations. IMPORTANCE Cryptic or defective prophages have lost genes necessary to excise from the bacterial chromosome and produce phage progeny. In recent years, studies have found that cryptic prophage gene products influence diverse aspects of bacterial host cell physiology. However, to obtain a complete understanding of the relationship between cryptic prophages and the host bacterium, identification of the environmental, host, or prophage-encoded factors that induce the expression of cryptic prophage genes is crucial. In this study, we examined the regulation of a cryptic prophage operon in Escherichia coli encoding a small RNA and a small protein that are involved in inhibiting bacterial cell division, altering host metabolism, and protecting the host bacterium from phage infections.


Assuntos
Escherichia coli K12 , Pequeno RNA não Traduzido , Escherichia coli/genética , Escherichia coli/metabolismo , Prófagos/genética , Escherichia coli K12/genética , Bacteriófago lambda/genética , Bactérias/genética , Pequeno RNA não Traduzido/metabolismo
14.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240425

RESUMO

Iron is an essential element because it functions as a cofactor of many enzymes, but excess iron causes cell damage. Iron hemostasis in Escherichia coli was transcriptionally maintained by the ferric uptake regulator (Fur). Despite having been studied extensively, the comprehensive physiological roles and mechanisms of Fur-coordinated iron metabolism still remain obscure. In this work, by integrating a high-resolution transcriptomic study of the Fur wild-type and knockout Escherichia coli K-12 strains in the presence or absence of iron with high-throughput ChIP-seq assay and physiological studies, we revisited the regulatory roles of iron and Fur systematically and discovered several intriguing features of Fur regulation. The size of the Fur regulon was expanded greatly, and significant discrepancies were observed to exist between the regulations of Fur on the genes under its direct repression and activation. Fur showed stronger binding strength to the genes under its repression, and genes that were repressed by Fur were more sensitive to Fur and iron regulation as compared to the genes that were activated by Fur. Finally, we found that Fur linked iron metabolism to many essential processes, and the systemic regulations of Fur on carbon metabolism, respiration, and motility were further validated or discussed. These results highlight how Fur and Fur-controlled iron metabolism affect many cellular processes in a systematic way.


Assuntos
Escherichia coli K12 , Regulon , Regulon/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Escherichia coli K12/genética , Ferro/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica
15.
EcoSal Plus ; 11(1): eesp00022023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37220074

RESUMO

EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on the regulation of gene expression, E. coli gene essentiality, and nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for the analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed online. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. Data generated from a whole-cell model that is parameterized from the latest data on EcoCyc are also available. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli K12/genética , Bases de Dados Genéticas , Software , Biologia Computacional , Proteínas de Escherichia coli/metabolismo
16.
Nat Chem Biol ; 19(8): 940-950, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37055614

RESUMO

Microbial communities often display region-specific properties, which give rise to complex interactions and emergent behaviors that are critical to the homeostasis and stress response of the communities. However, systems-level understanding of these properties still remains elusive. In this study, we established RAINBOW-seq and profiled the transcriptome of Escherichia coli biofilm communities with high spatial resolution and high gene coverage. We uncovered three modes of community-level coordination, including cross-regional resource allocation, local cycling and feedback signaling, which were mediated by strengthened transmembrane transport and spatially specific activation of metabolism. As a consequence of such coordination, the nutrient-limited region of the community maintained an unexpectedly high level of metabolism, enabling it to express many signaling genes and functionally unknown genes with potential sociality functions. Our work provides an extended understanding of the metabolic interplay in biofilms and presents a new approach of investigating complex interactions in bacterial communities on the systems level.


Assuntos
Escherichia coli K12 , Escherichia coli K12/genética , Escherichia coli/genética , Transcriptoma , Biofilmes , Bactérias/genética
17.
Chemosphere ; 329: 138697, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37062394

RESUMO

Bisphenol S (BPS) analogues are a group of recently reported emerging contaminants in the environment. Bacteria are important components of food webs. However, the potential risks of BPS analogues in bacteria have not been fully addressed. The toxicity effects and related mechanisms of two BPS analogues with different molecular weights (2,4-bisphenol S (2,4-BPS) and bis-(3-allyl-4-hydroxyphenyl) sulfone (TGSA)) on Escherichia coli K12 were compared. The minimum inhibitory concentration (MIC) of 2,4-BPS in the wild-type of E. coli K12 was lower than that of TGSA. The membrane permeability of the wild-type increased significantly after exposed to the same concentrations (0.5-50 nmol L-1) of 2,4-BPS and TGSA. In addition, 2,4-BPS induced more significant changes in membrane permeability than TGSA. Hormetic effects of 2,4-BPS and TGSA in the wild-type strain were noted in the levels of outer membrane proteins (ompC and ompF), multidrug efflux pump acriflavine resistance B (acrB) and type II topoisomerases. Transcriptomic results indicated these two BPS analogues inhibited the function of ABC transporters. In contrast to TGSA, 2,4-BPS affected DNA replication, tricarboxylic acid cycle, oxidative phosphorylation, and inhibited energy metabolism. Compared with wild-type strain, the ΔacrB mutant strain showed enhanced susceptibility to 2,4-BPS and TGSA with their MICs reduced by 20% and 11%, respectively. Deletion of the acrB affected the growth characteristics and induced stronger oxidative stress than the wild-type strain when exposed to 2,4-BPS or TGSA. The results suggested that 2,4-BPS were more toxic to E. coli K12 than TGSA in the concentration range of 0.5-50 nmol L-1, which was supported by the evidence from their impacts on membrane permeability and efflux pumps.


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Escherichia coli K12/genética , Escherichia coli , Transporte Biológico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sulfonas/toxicidade , Sulfonas/metabolismo , Bactérias/metabolismo , Permeabilidade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética
18.
Microb Genom ; 9(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36745549

RESUMO

Escherichia coli K-12 was originally isolated 100 years ago and since then it has become an invaluable model organism and a cornerstone of molecular biology research. However, despite its pedigree, since its initial isolation E. coli K-12 has been repeatedly cultured, passaged and mutagenized, resulting in an organism that carries many genetic changes. To understand more about this important model organism, we have sequenced the genomes of two ancestral K-12 strains, WG1 and EMG2, considered to be the progenitors of many key laboratory strains. Our analysis confirms that these strains still carry genetic elements such as bacteriophage lambda (λ) and the F plasmid, but also indicates that they have undergone extensive laboratory-based evolution. Thus, scrutinizing the genomes of ancestral E. coli K-12 strains leads us to examine whether E. coli K-12 is a sufficiently robust model organism for 21st century microbiology.


Assuntos
Escherichia coli K12 , Escherichia coli , Escherichia coli/genética , Escherichia coli K12/genética , Bacteriófago lambda , Sequência de Bases
19.
Microb Cell Fact ; 22(1): 10, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36642733

RESUMO

BACKGROUND: L-cysteine is an essential chemical building block in the pharmaceutical-, cosmetic-, food and agricultural sector. Conventionally, L-cysteine production relies on the conversion of keratinous biomass mediated by hydrochloric acid. Today, fermentative production based on recombinant E. coli, where L-cysteine production is streamlined and facilitated by synthetic plasmid constructs, is an alternative process at industrial scale. However, metabolic stress and the resulting production escape mechanisms in evolving populations are severely limiting factors during industrial biomanufacturing. We emulate high generation numbers typically reached in industrial fermentation processes with Escherichia coli harbouring L-cysteine production plasmid constructs. So far no genotypic and phenotypic alterations in early and late L-cysteine producing E. coli populations have been studied. RESULTS: In a comparative experimental design, the E. coli K12 production strain W3110 and the reduced genome strain MDS42, almost free of insertion sequences, were used as hosts. Data indicates that W3110 populations acquire growth fitness at the expense of L-cysteine productivity within 60 generations, while production in MDS42 populations remains stable. For the first time, the negative impact of predominantly insertion sequence family 3 and 5 transposases on L-cysteine production is reported, by combining differential transcriptome analysis with NGS based deep plasmid sequencing. Furthermore, metabolic clustering of differentially expressed genes supports the hypothesis, that metabolic stress induces rapid propagation of plasmid rearrangements, leading to reduced L-cysteine yields in evolving populations over industrial fermentation time scales. CONCLUSION: The results of this study implicate how selective deletion of insertion sequence families could be a new route for improving industrial L-cysteine or even general amino acid production using recombinant E. coli hosts. Instead of using minimal genome strains, a selective deletion of certain IS families could offer the benefits of adaptive laboratory evolution (ALE) while maintaining enhanced L-cysteine production stability.


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Humanos , Escherichia coli/metabolismo , Cisteína/metabolismo , Elementos de DNA Transponíveis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli K12/genética , Fermentação , Estresse Fisiológico , Engenharia Metabólica/métodos
20.
J Biol Chem ; 299(2): 102846, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586436

RESUMO

Escherichia coli K-12 possesses two versions of Trk/Ktr/HKT-type potassium ion (K+) transporters, TrkG and TrkH. The current paradigm is that TrkG and TrkH have largely identical characteristics, and little information is available regarding their functional differences. Here, we show using cation uptake experiments with K+ transporter knockout mutants that TrkG and TrkH have distinct ion transport activities and physiological roles. K+-transport by TrkG required Na+, whereas TrkH-mediated K+ uptake was not affected by Na+. An aspartic acid located five residues away from a critical glycine in the third pore-forming region might be involved in regulation of Na+-dependent activation of TrkG. In addition, we found that TrkG but not TrkH had Na+ uptake activity. Our analysis of K+ transport mutants revealed that TrkH supported cell growth more than TrkG; however, TrkG was able to complement loss of TrkH-mediated K+ uptake in E. coli. Furthermore, we determined that transcription of trkG in E. coli was downregulated but not completely silenced by the xenogeneic silencing factor H-NS (histone-like nucleoid structuring protein or heat-stable nucleoid-structuring protein). Taken together, the transport function of TrkG is clearly distinct from that of TrkH, and TrkG seems to have been accepted by E. coli during evolution as a K+ uptake system that coexists with TrkH.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Escherichia coli K12 , Proteínas de Escherichia coli , Canais de Potássio , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Potássio/metabolismo , Canais de Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...